If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-6t-56=0
a = 1; b = -6; c = -56;
Δ = b2-4ac
Δ = -62-4·1·(-56)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{65}}{2*1}=\frac{6-2\sqrt{65}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{65}}{2*1}=\frac{6+2\sqrt{65}}{2} $
| 3x^2-x=1200 | | 700y-38=42 | | 8x-10+3x+90=90 | | 8x-10+3x+90=88 | | 5x-5+3x+113=180 | | 4=9-8z | | 71=400+25x | | 0.4x+0.4(30)=0.3(x+40) | | 11+m=51-6m | | 0.4x+0.4(30)=0.3(x-40) | | 90+.40x=70+.80x | | 3x+38+9x+28=88 | | -(y-4)^2=-9 | | 4x+1=3^x | | x+-8-2=0 | | 8x+15+5x+34=90 | | 11z+11=2z+3 | | 5(5-(9x-7))+4x=0 | | 7(3r-)-(r+5)=-52 | | 3x−15∘+5x−23∘=90 | | 4/x+21-3/x-21=8x/x^2-441 | | 1/4x+1/9x+1/4=11/18 | | 4t+8=2t+12 | | 25x^2=9x | | 1/2y+9=1/7y | | 5n^2+40n=0 | | -14+3k+2k^2=0 | | 1133.54=3.14r2 | | 32=192-x | | 4y^2-28y-15=0 | | -14=2y+4 | | X+18=2.5x |